skip to main content


Search for: All records

Creators/Authors contains: "Kim, Dong Hyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Cell adhesion occurs when integrin recognizes and binds to Arg–Gly–Asp (RGD) ligands present in fibronectin. In this work, submolecular ligand size and spacing are tuned via template‐mediated in situ growth of nanoparticles for dynamic macrophage modulation. To tune liganded gold nanoparticle (GNP) size and spacing from 3 to 20 nm, in situ localized assemblies of GNP arrays on nanomagnetite templates are engineered. 3 nm‐spaced ligands stimulate the binding of integrin, which mediates macrophage‐adhesion‐assisted pro‐regenerative polarization as compared to 20 nm‐spaced ligands, which can be dynamically anchored to the substrate for stabilizing integrin binding and facilitating dynamic macrophage adhesion. Increasing the ligand size from 7 to 20 nm only slightly promotes macrophage adhesion, not observed with 13 nm‐sized ligands. Increasing the ligand spacing from 3 to 17 nm significantly hinders macrophage adhesion that induces inflammatory polarization. Submolecular tuning of ligand spacing can dominantly modulate host macrophages.

     
    more » « less
  2. Precise form-fitting of prosthetic sockets is important for the comfort and well-being of persons with limb amputations. Capabilities for continuous monitoring of pressure and temperature at the skin-prosthesis interface can be valuable in the fitting process and in monitoring for the development of dangerous regions of increased pressure and temperature as limb volume changes during daily activities. Conventional pressure transducers and temperature sensors cannot provide comfortable, irritation-free measurements because of their relatively rigid construction and requirements for wired interfaces to external data acquisition hardware. Here, we introduce a millimeter-scale pressure sensor that adopts a soft, three-dimensional design that integrates into a thin, flexible battery-free, wireless platform with a built-in temperature sensor to allow operation in a noninvasive, imperceptible fashion directly at the skin-prosthesis interface. The sensor system mounts on the surface of the skin of the residual limb, in single or multiple locations of interest. A wireless reader module attached to the outside of the prosthetic socket wirelessly provides power to the sensor and wirelessly receives data from it, for continuous long-range transmission to a standard consumer electronic device such as a smartphone or tablet computer. Characterization of both the sensor and the system, together with theoretical analysis of the key responses, illustrates linear, accurate responses and the ability to address the entire range of relevant pressures and to capture skin temperature accurately, both in a continuous mode. Clinical application in two prosthesis users demonstrates the functionality and feasibility of this soft, wireless system.

     
    more » « less
  3. Abstract

    Indwelling arterial lines, the clinical gold standard for continuous blood pressure (BP) monitoring in the pediatric intensive care unit (PICU), have significant drawbacks due to their invasive nature, ischemic risk, and impediment to natural body movement. A noninvasive, wireless, and accurate alternative would greatly improve the quality of patient care. Recently introduced classes of wireless, skin‐interfaced devices offer capabilities in continuous, precise monitoring of physiologic waveforms and vital signs in pediatric and neonatal patients, but have not yet been employed for continuous tracking of systolic and diastolic BP—critical for guiding clinical decision‐making in the PICU. The results presented here focus on materials and mechanics that optimize the system‐level properties of these devices to enhance their reliable use in this context, achieving full compatibility with the range of body sizes, skin types, and sterilization schemes typically encountered in the PICU. Systematic analysis of the data from these devices on 23 pediatric patients, yields derived, noninvasive BP values that can be quantitatively validated against direct recordings from arterial lines. The results from this diverse cohort, including those under pharmacological protocols, suggest that wireless, skin‐interfaced devices can, in certain circumstances of practical utility, accurately and continuously monitor BP in the PICU patient population.

     
    more » « less